Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Struct Biol ; 74: 102383, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504104

RESUMO

The majority of mitochondrial proteins are nuclear-encoded and need to be transported into the mitochondria, including the proteins in the outer mitochondrial membrane. For ß-barrel proteins, the preproteins are initially recognized and imported by the TOM complex, then shuttled to the SAM complex via small Tim proteins. For ⍺-helical proteins, some preproteins are recognized by the TOM complex and imported into the membrane by the MIM complex. In recent years multiple structures of the TOM complex and the SAM complex have been reported, increasing our understanding of the mechanism of protein biogenesis in the outer mitochondrial membrane.


Assuntos
Membranas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Mol Biol ; 433(16): 166894, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-33639212

RESUMO

ß-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial ß-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial ß-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Cloroplastos/genética , Cloroplastos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
3.
Nat Commun ; 11(1): 3290, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620929

RESUMO

In mitochondria, ß-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold ß-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane ß-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 ß-barrel opens a lateral gate to accommodate its substrates.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Detergentes/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Sordariales/genética , Sordariales/metabolismo
4.
Methods Mol Biol ; 2127: 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112311

RESUMO

Saccharomyces cerevisiae is a useful eukaryotic expression system for mitochondrial membrane proteins due to its ease of growth and ability to provide a native membrane environment. The development of the pBEVY vector system has further increased the potential of S. cerevisiae as an expression system by creating a method for expressing multiple proteins simultaneously. This vector system is amenable to the expression and purification of multi-subunit protein complexes. Here we describe the cloning, yeast transformation, and co-expression of multi-subunit outer mitochondrial membrane complexes using the pBEVY vector system.


Assuntos
Clonagem Molecular/métodos , Proteínas de Membrana , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fracionamento Celular/métodos , Regulação Fúngica da Expressão Gênica , Vetores Genéticos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/química , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Organismos Geneticamente Modificados , Multimerização Proteica/genética , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...